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ABSTRACT

 

A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns
is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used
throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems.
Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe’s
upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution re-
construction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analyti-
cal formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects
are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce
the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of
USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft
with external stores at transonic speed.

 

INTRODUCTION

 

This paper is offered in response to an invitation to present to the “finite element” community
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 an al-
ternate approach for solving the Navier-Stokes equations using a tetrahedral-based “finite volume” formula-
tion. The focus will be on the features and application of the cell-centered upwind flow solver USM3Dns
[5,6,8] which is a component of the NASA 
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ystem (
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) [7].

The primary attractiveness of tetrahedral-based schemes hinges on a demonstrated capability for
rapid grid generation on a wide variety of complex geometries by a broad range of users [9,15,21]. The
VGRIDns code [21], another component of 

 

TetrUSS,

 

 is widely used in the U.S. to generate inviscid and vis-
cous tetrahedral grids on geometries ranging from aircraft to heart pumps. As with inviscid tetrahedral grids
in the past, viscous tetrahedral grids are generated on complex geometries by a range of users in a matter of
days.

The finite-volume approach is based on the physical concept of using macroscopic control volumes
to numerically solve the conservation laws of fluid motion. Jameson, et. al. [12] reported one of the earliest
successful implementations of this approach for solving the Euler equations on tetrahedral grids. The finite-
element method [e.g. 18] is more mathematically based and uses a weak variational form of the governing
equations, along with polynomial shape functions, for discretization. While there are inherent differences in
the two methodologies, there are similarities between the Galerkin finite element procedure with piecewise-
linear shape functions and the finite-volume approach [12].

Tetrahedral finite-volume Navier-Stokes methodology is maturing along two tracks: node-centered
and cell-centered schemes, each with their relative merits. Node-centered schemes exploit an efficient edge-
based data structure and more readily facilitate general polyhedral cell volumes [e.g. 2,4,16], but typically
require large tetrahedral grids. Cell-centered schemes exploit geometric features of tetrahedra for construct-
ing accurate spatial reconstruction schemes and provide comparable accuracy with fewer tetrahedra
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, but
they are not as easily extendable to general elements. While the underlying Navier-Stokes methodologies
have advanced rapidly in recent years, they are still less mature than their more established “structured” grid
counterparts. Legitimate questions still remain regarding the solution accuracy of unstructured Navier-
Stokes schemes [3,4], and the user community does not yet have a sufficient experience base from which to
derive full confidence. Thus, there is a strong need for more fundamental analyses and systematic applica-
tion studies which address the key issues of solution accuracy, robustness, and efficiency on a range of con-
figuration and flow classes.

 

1

 

Configuration Aerodynamics Br., Mail Stop 499, NASA Langley Research Center, Hampton, Virginia, 23681-0001, USA.
Email/Phone: n.t.frink@larc.nasa.gov (757-864-2864), s.pirzadeh@larc.nasa.gov (757-864-2245)

 

2

 

Tenth International Conference on Finite Elements in Fluids, Tucson, Arizona, USA, January 5-8, 1998

 

3

 

URL: http://ad-www.larc.nasa.gov/tsab/tetruss

 

4

 

A given tetrahedral grid has between 5 and 5.5 more tetrahedra than nodes. Additional spatial resolution is achieved by the cell- cen-
tered scheme on a given grid by virtue of resolving the flow solution at >5 times more spatial locations than node-centered scheme.



 

There is an ongoing discussion among the computational fluid dynamics community regarding the
use of pure tetrahedra vs. mixed elements for Navier-Stokes computations. While there has been no defini-
tive resolution to this issue, the authors are generally pleased with the (cell-centered) tetrahedral approach.
Grid generation is rapid and robust with VGRIDns. Grid sizes are manageable, and the number of tetrahedra
needed to resolve the boundary layer is comparable to that for structured or prismatic grid methods. The pri-
mary shortcomings arise from the large memory requirements of general-indexed schemes using implicit
time integration. Work is currently underway to resolve these problems using zonal decomposition tech-
niques and adaptive gridding.

The scope of this paper is to review the underlying Navier-Stokes methodology of the VGRIDns grid
generator and USM3Dns finite-volume flow solver, and to demonstrate this emerging capability on a very
complex configuration. An assessment of solution accuracy is presented for the flat-plate boundary layer
problem. The issues of accuracy and robustness are examined with a transonic computation on a realistic
complex configuration using a full F-16 aircraft with external stores.

 

TETRAHEDRAL GRID GENERATOR, VGRIDns

 

VGRIDns is based on the Advancing-Front (AFM) [14] and the Advancing-Layers (ALM) [20]
methods. The generation of a ‘Navier-Stokes’ grid is accomplished automatically in three main steps: (1)
generation of triangular surface grid by AFM and ALM, (2) generation of thin-layered tetrahedral grid in the
boundary layer by ALM, and (3) generation of regular (inviscid) tetrahedral grid outside the boundary layer
by AFM.

Grid clustering is controlled by a prescribed stretching function within the ‘viscous’ layers, and a
‘transparent’ Cartesian background grid [19] overlaying the entire domain. Included in the background grid
are a number of prescribed ‘point’ and ‘line’ sources for defining local cell spacings. The grid characteristics
are smoothly diffused from the sources onto the background grid nodes by solving an elliptic equation. The
problem is analogous to the transfer heat in a conducting medium.

Two main operations are involved in ALM: 1) computation of surface vectors along which the grid
points are distributed and 2) construction of a pattern for a compatible cell connectivity within the thin lay-
ers. Thin layers of tetrahedra are formed by inserting new points along the surface vectors and connecting
the points according to the predetermined connectivity pattern. The individual layers (see Fig. 1) continue

advancing independent of each other until either the background grid information or an approaching front
warrants them to stop. When all layers are complete, the ALM process automatically switches to the AFM to
generate regular tetrahedra outside the boundary layer. With a common background grid controlling both
methods, the transition from thin layers to the regular grid becomes gradual and continuous.

Another feature of VGRIDns which is of practical importance for Navier-Stokes is its ability to gen-
erate multi-directional anisotropically stretched grids [22]. This results in at least a factor of three reduction

 

Fig. 1  Thin-layered tetrahedra formed by ALM; (
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in overall number of cells. With such a capability, fewer points are distributed in the directions of reduced
flow gradient with no loss of grid resolution in other essential direction(s).

 

FINITE-VOLUME FLOW SOLVER, USM3Dns

 

The fluid motion is governed by the time-dependent Reynolds-averaged Navier-Stokes equations for
an ideal gas which express the conservation of mass, momentum, and energy for a compressible Newtonian
fluid in the absence of external forces. The equations are prescribed in integral form for a bounded domain

 

Ω 

 

with the boundary 

 

∂Ω

 

(1)

where the state variables are , and the inviscid and viscous fluxes,

 

 F(Q)

 

 and

 

 

 

G(Q),

 

respectively, are defined in Ref. [8].
A finite-volume discretization is applied to Eq. 1 which results in a consistent approximation to the

conservation laws. The spatial domain is divided into a finite number of tetrahedral cell volumes. The dis-
cretized solution to Eq. 1 results in a set of volume-averaged state variables which are in balance with the
area-averaged fluxes (inviscid and viscous) across the cell faces.

 

Inviscid Fluxes

 

The primary challenge in designing a tetrahedral cell-centered finite-volume scheme is the accurate
reconstruction of cell-averaged data within non-isotropic tetrahedra to the perimeter triangular faces for flux
computation as illustrated in Fig. 2.  A novel cell reconstruction process was derived in Ref. [6], which is

based on an analytical formulation for computing the gradient term of a Taylor series expansion within tetra-
hedral cells. The scheme consists of simple, universal formula for tetrahedral cells

(2)

where 

 

q

 

=[

 

ρ

 

,u,v,w,p

 

]

 

T

 

 are the primitive variables of density, velocity, and pressure. Its derivation is based on
exploiting several invariant features of tetrahedra in combination with the mid-point trapezoidal rule for nu-
merical integration. This gives rise to the analytical expression of the Taylor series expansion of the cell-av-
eraged solution to the cell face in Eq. 2. With an accurate reconstruction of data at the cell faces, the inviscid
flux quantities are computed in a straightforward manner across each face using the Roe [23] flux-difference
splitting (FDS) approach. Limiting of the reconstructed solution is generally necessary for FDS to eliminate
overshoots of the expansion in high-gradient regions, such as shocks. The well known Superbee or MinMod
limiters have been implemented in USM3Dns.

A key component of the scheme is the secondary reconstruction of surrounding cell-averaged data to
a common vertex or node by a weighted averaging procedure. The current averaging scheme, originally pro-
posed in Ref. [5], is based on an inverse-distance weighting of the primitive variables from the cell centroid
to the cell vertices:

 

Fig. 2  Reconstruction stencil for tetrahedral cell-centered scheme.
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(3)

where .

Reconstruction at boundary nodes is accomplished through ghost-cells as described in Ref. [6].

Until recently, the sole approach for secondary reconstruction was a pseudo-Laplacian averaging
scheme presented in Ref. [6]. This scheme offers the advantage of second-order accuracy in reconstructing
data from surrounding cells to a node. However, there is a need to artificially “clip” the weighting factors be-
tween 0 and 2 (Ref. [10]) to avert a violation of the positivity principle which is necessary for solution stabil-
ity. This artificial “clipping” process does, unfortunately, compromise the formal second-order accuracy of
the scheme to some extent. Recent experiences with applying the pseudo-Laplacian scheme to Navier-
Stokes computations have surfaced some anomalous behavior which needs further investigation. Mean-
while, for the present work, we are temporarily reverting to the inverse-distance averaging of Eq. 3 which is
less accurate, but will never violate the principle of positivity.

 

Viscous Fluxes

 

The viscous fluxes 

 

G(Q)

 

 are approximated at the cell-face centroids by linear reconstruction which
provides a continuous representation of the solution variables across the cell faces. A modified version of
the stencil presented by Mitchell [17], sketched in Fig. 3, utilizes the averaged solution quantities at the three
vertices of a cell face, 
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, etc. for 
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 are derived from a Cramer’s rule solu-
tion to

. (4)

 

Time Integration

 

The computations are advanced to steady state by the implicit time advancement strategy of Ander-
son [1]. The scheme uses the linearized, backward Euler time differencing approach to update the solution at
each time step. The linear system of equations are solved at each time step with a point-Jacobi subiteration
on groups of tetrahedral cells which are separated into ‘colors’ (different from face-coloring) such that no
two cells share a common face. While the point-Jacobi method is in itself not very efficient, convergence
rate is accelerated by using the latest values of the updated solution variables as soon as they are available
after subiteration of prior ‘colors’. This produces a Gauss-Seidel-like effect, and the method has the advan-
tage of being completely vectorizable. Typically, 10 subiterations are used for Navier-Stokes computations,
and 20 subiterations for Euler.

Because of the number of operations required to invert a matrix depends on the matrix bandwidth,
the left-hand side of the system of linear equations is evaluated with first-order differencing to reduce both
required storage and computer time. Convergence of the subiterations is further accelerated by using Van
Leer's Flux Vector Splitting (FVS) [25] on the left-hand side. Thus in the present study, first-order differenc-

 

Fig. 3  Modified tetrahedral viscous stencil.
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ing and FVS are applied to the left-hand side, and higher order differencing and FDS to the right-hand side.
The viscous Jacobian terms are included in the left-hand side of the equation.

USM3Dns requires 175 words/cell of core memory, and runs at a speed of 27 µs/cell/cycle on a
CRAY C-90 with higher-order differencing. Multitasking on the CRAY is utilized for reducing the wall-
clock time of a computation. Multitask efficiencies of 6 out of 10 processors on a 16-processor machine are
typically achieved for most applications.

Turbulence Model
Spalart-Allmaras. Closure of the Reynolds stress is provided by the one-equation Spalart-Allmaras

(S-A) turbulence model. This model is derived “using empiricism and arguments of dimensional analysis,
Galilean invariance, and selective dependence on the molecular viscosity” [24]. The model solves a partial
differential equation (PDE) over the entire field for a transformed working variable  from which the eddy
viscosity, µt, can be extracted. The PDE is solved separately from the flow equations using the same back-
ward Euler time integration scheme, which results in a loosely coupled system. The production and destruc-
tion terms have been modified as recommended in Ref. [24] to ensure positive eddy viscosity throughout the
computation.

On ‘no-slip’ surfaces, the dependent variable, , is set to zero. For tangent-flow surfaces, a zero gra-
dient of the variable is applied. Far field boundary conditions are applied by extrapolating  from the inte-
rior for outflow boundaries, and taken from the free stream for the inflow.

The S-A model requires that the distance of each cell to the nearest wall be provided for the near-wall
damping terms for cells which are in proximity to ‘viscous’ surfaces. These distances are determined prior to
code execution for cells in the “viscous” layers. A very efficient preprocessing code is developed which ex-
ploits the ordering of the nodes in these layers (see Fig. 1) to complete the distance computation within a few
seconds.

Wall Function. The S-A model has been coupled with a wall function formulation to eliminate the
need for resolving the flow in the sublayer portion of a turbulent boundary layer. Details are presented in
Ref. [8]. With this approach, the inner region of the boundary layer is modeled by an analytical function
which is matched with the numerical solution in the outer region. This has the advantage of 1) significantly
reducing memory requirement by eliminating a large portion of cells normally required to resolve the sub-
layer, and 2) improving overall convergence by removing the thinner, more highly stretched cells which add
stiffness to the solution process. 

The selected wall function is a law-of-the-wall expression [26] derived by Spalding in 1961. The
present implementation considers no adjustment to adiabatic wall density, which is important to high speed
flows.

RESULTS AND DISCUSSION
Results are presented in this section for the flat-plate boundary layer problem, and a complete F-16

aircraft with external stores at transonic speeds. Only a cursory summary of the flat-plate problem is in-
cluded from prior work [8] to review the accuracy of a relatively new wall-function approach. The F-16
computation was chosen to demonstrate the emerging unstructured finite-volume Navier-Stokes capability
on a realistic complex aircraft configuration which exhibits strong viscous effects during store separation.

Grid Spacing
The normal grid spacing across the boundary layer is prescribed by the exponential function

(5)

such that the distance from the jth layer to the surface is given by nj = nj-1 + ∆nj-1.

The parameter ∆n1 is the spacing of the first node above the surface (Fig. 1), while a and b are param-
eters which govern the growth. A small utility program is used to determine an initial estimate of ∆n1, a, and
b on an assumed 1/7th law velocity profile for prescribed values of Reynolds number, n+, and number of
points across the boundary layer.

ν̃

ν̃
ν̃

∆nj ∆n1 1 a 1 b+( ) j 1–+( ) j 1–
=



Flat-Plate Boundary Layer
The flat-plate boundary layer solution is used to assess the accuracy of the wall function in predicting

the flat-plate turbulent skin friction. The computations were made on quasi-2D tetrahedral ‘channel’ grids
for M∞=0.5 and ReL=2×106 where “L” is the length of the plate.

Grid 1 was generated by constructing a 49X12 H-topology structured grid with a normal spacing de-
fined by ∆n1=0.001L, a=0.3, and b=0.07 in Eq. 5, which yields roughly 5 nodes across the boundary layer at
x/L=0.5 and an approximate n+ of 80 at the first node. The resulting upper domain boundary (k=12) is lo-
cated at 0.22L. The 2D grid was stacked spanwise in 0.02L increments to form three planes resulting in a 3D
structured dual-channel grid (49X3X12) of H-H topology. Each hexahedral cell was subdivided into 2 pris-
matic cells, which were further subdivided into 3 tetrahedra each to form the 3D tetrahedral grid with 6,336
cells. The “flat plate” was discretized by a cosine clustering between the “structured” indices

along the k=1 boundary with inviscid flow prescribed on the k=1 boundary ahead of the plate.
Boundary conditions of constant entropy and constant total pressure were prescribed on the inflow plane,
while an extrapolation condition was applied to the upper and exit domain boundaries. A constant
freestream pressure was also imposed on the exit plane.

A second grid was generated in a similar manner as the first to explore the lower limits of grid
coarseness on solution accuracy. Grid 2 was constructed from a 49X6 H-topology with the Eq. 5 parameters
of ∆n1=0.001L, a=2.0, and b=0.07. This resulted in a 3D channel grid (49X3X6) with 2,880 cells, and an
upper domain boundary (k=6) also at 0.22L. 

Fig. 4  portrays the effect of normal grid density on skin-friction coefficient and the law-of-the-wall
behavior at x/L=0.5, Rex=1×106, for the two grids. The plotted nodal solutions were reconstructed from the

surrounding tetrahedral cells using the weighted averaging procedure of Ref. [6]. The plotted nodal data
points effectively have three layers of tetrahedra between each pair, as sketched in Fig. 1. Note that the first
nodal value is matched with the log layer at approximately n+=80 for both grids. Grid 1 has 5 nodes (15 tet-
rahedra) across the boundary layer, while Grid 2 has 3 nodes (9 tetrahedra). Grid 1 displays excellent agree-
ment over 0.2<x/L≤1.0 with the theoretical coefficient for fully turbulent flow, ,
which is based on the 1/7th power law assumption. Grid 2 does not exhibit the same level of agreement, but
is remarkably close considering its extreme grid coarseness across the boundary layer. 

These results highlight a common misconception about tetrahedral grid resolution. For a cell-cen-
tered scheme, it is important to think in terms of cell-resolution rather than node-resolution. It is the number
of cells across the boundary layer that are important to solution accuracy for the present method.

Fig. 4  Effect of normal grid density on skin friction (left), and law-of-the-wall at x/L=0.5 (right), for flat-plate 
boundary layer flow; Mach=0.5 and ReL=2 million.
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On a side note, the spurious behavior of the computed skin friction near the plate leading edge
 in Fig. 4  is not fully understood at this time and is presently under investigation. However, the

principal interest for the present study is in the fully developed turbulent flow over the remaining region of
the plate.

F-16 with Generic Finned Store
Unstructured transonic Navier-Stokes computations are presented for the complete F-16 aircraft con-

figuration as a demonstration and assessment of the present finite-volume methodology for a very complex
geometry and flow field. In addition to the base aircraft, the configuration includes a flowing inlet, external
fuel tank mounted on the inner wing pylon, and a generic finned-store suspended below the outer wing py-
lon. Support stings are also attached to the fuselage and the generic finned-store to simulate the wing-tunnel
configuration tested in Ref. [11]. The horizontal and vertical tails were not present during the wind-tunnel
test, but are included on the computational geometry as additional geometric complexities for demonstration
purposes. Their influence on the store pressures is expected to be small.

An inviscid Euler study on this configuration is reported by Kern and Bruner [13] where the primary
interest was the accurate and efficient prediction of initial loads on the finned-store to drive a separation tra-
jectory analysis. The format of the following results is replicated from Ref. [13] to better complement the
existing knowledge base.

Grid Generation. Tetrahedral viscous and inviscid grids were generated for the F-16 aircraft using
VGRIDns. The ‘viscous’ grid, shown in Fig. 5, has 1,428,779 tetrahedra, 255,959 nodes, whereas the ‘invis-
cid’ grid (not shown) contained 1,111,762 cells and 202,378 nodes.The farfield boundaries were prescribed
as 5.4, 6.2, and 3.6 body lengths ahead, aft, and spanwise of the aircraft, respectively. These boundary loca-
tions respectively correspond to 25, 29, and 17 wing mean-aerodynamic-chord (mac) lengths. 

The F-16 surface definition is defined in full-scale inches. The normal grid spacing for the Navier-
Stokes computation is sized for a wind-tunnel Reynolds number of 2 million, based on mac, assuming a 1/
7th law boundary layer profile at the mid-mac location on the wing. The spacing is prescribed for computa-
tion with the wall function to yield 18 tetrahedral layers (6 nodes) across the mid-chord boundary layer with
an n+=30 for the first node. The corresponding parameters for Eq. 5 are ∆n1=0.046 inches, a=0.745, and
b=0.07. The thin-layered tetrahedra are evident on the symmetry plane in Fig. 5  and on a plane cutting
through the wing, pylon, and store. While the grid was generated over an extended period of time, it is esti-
mated that the cumulative manual labor was in the range of 40 to 60 hours.

The ‘inviscid’ grid was generated from the same ‘viscous’ grid input file with an initial grid spacing
of ∆n1=0.2 which produced a near identical match between the two surface triangulations. Inviscid grids are
typically generated entirely by the AFM approach. However, to gain more control of the cells generated
within the small gap between the finned-store and its pylon, it was necessary to conduct the inviscid grid

Fig. 5  Viscous tetrahedral grid on complete F-16 aircraft with external stores, 1,428,779 cells. (Left - triangula-
tion of surface and symmetry plane, Right - tetrahedra on plane intersecting wing/pylon/finned-store.)

0 x 0.2<≤( )

Lars

Viscous
Layers

Viscous
Layers

Viscous
Layers



generation with the ALM option using an appropriate initial spacing which yielded five layers of tetrahedra
within the gap.

Flow Solution. Navier-Stokes (N-S) and Euler flow solutions were obtained for angles of attack
(AOA) of 0, 2, 4, and 8 degrees at Mach 0.95. The Navier-Stokes cases were run for 1000 iterations starting
from freestream conditions with an initial Courant-Friedrichs-Lewy (CFL) number of 0.01 that was ramped
up to 100 over 500 cycles. The Euler solutions were run for 800 cycles starting from freestream with an ini-
tial CFL=10 with ramping up to 50 over 50 cycles. Convergence was accelerated to steady state with local
time stepping. The inviscid fluxes were limited with the Superbee limiter.

The USM3Dns solver was executed with multitasking over 10 processors on a 16-processor CRAY
C90. The Navier-Stokes and Euler solutions required 254 and 197 megawords of core memory, respectively.
With a multitasking efficiency of 6 out of 10 processors, each N-S solution required from 10.5 to 11 hours of
CPU time which was turned around in 2 wallclock hours. One N-S solution required 14.8 CPU hours and
2.75 wallclock hours due to the particular scheduling load of the multitasking queue when the run was sub-
mitted. The Euler solutions each utilized approximately 6.6 CPU hours and 45 wallclock minutes of CRAY
time, with a multitasking efficiency of 8.7 out of 10 processors.

The history of normalized residual error and lift coefficient for the Navier-Stokes solutions in Fig.
6  show a consistent convergence for each case. The leveling off of residual error is common for solutions
on complex configurations at transonic speeds which also occurred for the Euler solutions. The oscillatory
behavior above 500 iterations is most likely due to local recirculatory flow oscillations. Convergence is usu-
ally assessed from the force and moment coefficients. 

Figure 7  depicts the surface pressure contours and store/pylon flow patterns for the N-S solution at
AOA=4 degree. The global pressure field is characterized by strong shock systems and interactions, both be-
tween store components and in the farfield. The surface flow patterns reveal shock-induced separations on
the store afterbody and aft-pylon region.

Force and Moments. Fig. 8  presents a comparison of the experimental force and moments of the
store with N-S and Euler results from USM3Dns. The plots depict the variation of store normal and side
force coefficients (CN and CY, respectively) and the pitch (Cm) and yaw (Cn) moments, in the store body
axis system, with angle of attack. Forces are positive upward or inboard from a cockpit perspective. Mo-
ments are positive for nose pitching upward or yawing inboard relative to the aircraft. The N-S results are
generally in better agreement with the experimental data [11] than the Euler solutions, with the exception of
the yawing moment, Cn. The largest benefit to the N-S approach occurs at AOA of 0 degrees. Reference
[13] reported difficulties at this AOA with the Euler modeling. Very strong shock interactions were pro-
duced by the inviscid equations between the store’s aft upper fins and the support pylon which may not be
present in real flow. The present N-S solutions produce a more physically correct result by modeling the aft-
store-body shock-induced flow separation, as will be shown in the next section.

Surface Pressures. The computed longitudinal distributions of surface pressure coefficient for the
finned-store body are compared with experimental data from Ref. [11] in Fig. 9  for 4 degrees AOA. The
top, bottom, inboard, and outboard longitudinal stations correspond to radial locations of 5, 185, 275, and 95

Fig. 6  History of L2-norm residual error and lift coefficient of Navier-Stokes flow solutions.



degrees, respectively, measured from the top of the store body and rotating outward away from the fuselage.
Values for x/Lstore of 0.0 correspond to the store nose, and 1.0 to an aft-body station slightly behind the store
fins. The correlation of pressure coefficient is generally good for the bottom, outboard, and inboard longitu-
dinal stations. The poor correlation along the top station is caused by the interference of sway braces used in
the wind tunnel test, but not modeled in the computation, which induce a local suction at store body stations
of 43- and 59-percent. Consistent with results from Ref. [13], the Euler solutions predict a rapid expansion
followed by a strong shock at the boat-tail of the body. As expected from the N-S solution, the boat-tail sep-
aration, evident in the surface flows in Fig. 7, results in a softened expansion in Fig. 9  and brings the aft-
shock into better agreement. There is also a generally better agreement of the mid-body compressions for the
Navier-Stokes solutions.

A similar, but more dramatic effect can be observed in the fin pressure coefficient distributions in
Fig. 10. These longitudinal distributions are plotted along the 50-percent exposed-fin span station for the in-
board-upper and outboard-upper fin components. The N-S methodology yields a significant improvement in
predicting the shock strength and location on the aft 60-percent of the fin. A further assessment of the effect
of grid refinement on the pressure distributions of Figs. 9  and 10  is warranted in future work. However,
level of agreement of the present Navier-Stokes comparisons is good considering the relatively small num-
ber of tetrahedra (1,428,779 cells) used to resolve this complex full aircraft configuration.

Fig. 7  Navier-Stokes flow solution on complete F-16 aircraft with stores for Mach 0.95, angle of attack 4 degrees, 
and Remac=2 million. (Left - isobars of pressure, Right - surface flow patterns on aft finned-store and pylon.)

Fig. 8  Variation of store forces and moments with angle of attack, Mach=0.95.



CONCLUDING REMARKS
A review has been presented of the algorithmic features and capabilities of the tetrahedral-based fi-

nite-volume Euler and Navier-Stokes flow solver USM3Dns. This code, along with the tetrahedral grid gen-
erator, VGRIDns, are primary components of the NASA TetrUSS package which is being used extensively
throughout the U.S. for solving complex aerodynamic problems. The Navier-Stokes capability is maturing
rapidly as a result of many focused customer applications on a range of configurations.

The present work has addressed the issues of accuracy and robustness of the USM3Dns Navier-
Stokes feature using the flat-plate turbulent boundary layer problem, and a full F-16 aircraft with external
stores. The code achieves excellent accuracy in predicting the turbulent skin friction coefficient on the flat
plate with as few as 15 tetrahedral layers (5 nodes) across the boundary layer using the Spalart-Allmaras
one-equation turbulence model with a wall function. The F-16 calculation serves as a good test case for
demonstrating robustness and accuracy on a very complex geometry with transonic flow. A reasonably good
prediction of force-moments and surface pressures on the generic finned-store body and fins was achieved
with as few as 1.4 million tetrahedral cells, and within 2 wallclock hours per solution on a CRAY C90.
While many more application studies are needed to increase user confidence in this capability, these results
serve to demonstrate the strong potential for tetrahedral-based finite-volume Navier-Stokes methodologies
to become a practical computational aerodynamic tool.

Fig. 9  Longitudinal distribution of surface pressure coefficient on generic finned-store body at Mach 0.95 and 
angle of attack 4 degrees. (Left - top and bottom, Right - outboard and inboard)

Fig. 10  Longitudinal distribution of surface pressure coefficient on upper inboard and outboard fins on generic 
store at Mach 0.95 and angle of attack 4 degrees. (Left -inboard-upper fin, Right - outboard-upper fin
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